On number of pendants in local antimagic chromatic number
نویسندگان
چکیده
منابع مشابه
The locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملLocal chromatic number of quadrangulations of surfaces
The local chromatic number of a graph G, as introduced in [4], is the minimum integer k such that G admits a proper coloring (with an arbitrary number of colors) in which the neighborhood of each vertex uses less than k colors. In [17] a connection of the local chromatic number to topological properties of (a box complex of) the graph was established and in [18] it was shown that a topological ...
متن کاملOn Perles’ question and local chromatic number of graphs
Our principal aim is to give the complete answer to the question posed by Micha Perles, which generalizes the Lyusternik-Schnirel’man version of the Borsuk-Ulam theorem. As a consequence, we also obtain the improved lower bound for the local chromatic number of certain class of graphs.
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملPacking chromatic number versus chromatic and clique number
The packing chromatic number χρ(G) of a graphG is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c. If so, we say that (a, b, c) is realizable. It is proved that b =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Discrete Mathematical Sciences and Cryptography
سال: 2021
ISSN: 0972-0529,2169-0065
DOI: 10.1080/09720529.2021.1920190